Determination of Difficult-to-Measure Nuclides in Radioactive Wastes of NPP Paks, Hungary

Nóra Vajda – Zsuzsa Molnár – Edit Bokori – Judit Groska RADANAL Ltd., Budapest, Hungary

Mihály Veres – Árpád Bihari – Róbert Janovics – Mihály Molnár Institute for Nuclear Research HAS - Isotoptech Co, Debrecen, Hungary

NKS-B RadWorkshop, 8-12 Oct 2018, Roskilde, Denmark

Contents

Nuclear facilities, radioactive wastes and waste characterization in Hungary
Determination of DTM nuclides at RADANAL Ltd.
Determination of actinides and ⁹³Zr in NPP wastes with combined methods based on the use of UTEVA,

TRU, DGA Determination of DTM fission products: 90 Sr, 135 Cs

Determination of DTM activation products: ⁵

⁵⁵Fe-⁵⁹Ni-⁶³Ni

^{93m}Nb-⁹⁴Nb-¹²⁵Sb

Brief overview on the determination of DTM nuclides at INR-ISOTOPTECH Co. ³H, ¹⁴C, ³⁶Cl, ¹²⁹I, ⁹⁹Tc, ^{108m}Ag, ¹⁰⁷Pd, ⁷⁹Se Scaling factors

Nuclear facilities in Hungary

Waste processing and characterization at NPP Paks

Solid wastes:

collection, comprassion, storage in drums (210 L), 707 drums in 2014 Characterization by Segmented Gamma Scanning (SGS) of <u>drums</u> and SF method

Liquid radioactive wastes:

radioactivity originates from the PC collected and processed by evaporation

• evaporator concentrates: stored in tanks of 200 m3

~400 g/L salt content (borate), pH ~13 (NaOH), oxalic acid, citric acid, EDTA LILW ~6500 m³ by 2014

liquid waste treatment technology (LWT):

destruction of organics with KMnO4, removal of Co by filtration of hydroxide ppt, ultrafiltration, Cs removal with CsTREAT (FORTUM) ion exchanger, borax removal solidification by cementization, storage in <u>drums</u>, burial at Waste Depository Bátaapáti + clearence **wastes of different composition**

- decontamination solutions: AP-CITROX technology
- spent resins

Characterization by γ scanning, isotope specific analysis \rightarrow SF calculation

Nuclides to be analyzed

Institute for Nuclear Research, HAS - ISOTOPTECH Co.							
Nuclide	T _{1/2} (year	MDA [Bq/l]	Type of measurement	Remark			
Activation products							
³ Н	12,32	1	beta spectrometry	DTM			
¹⁴ C	5730	1	beta spectrometry	DTM			
³⁶ CI	301000	10	beta spectrometry	DTM			
⁴¹ Ca	102000	10	AMS	DTM			
Fission pr	oducts						
¹²⁹	15700000	0,1	beta spectrometry	DTM			
⁹⁹ Tc	211000	0,1	beta spectrometry	DTM			
¹⁰⁶ Ru	1,01	NR	gamma spectrometry				
¹⁰⁷ Pd	6500000	1	beta spectrometry	DTM			
⁷⁹ Se	327000	10	ICP-MS	DTM			
¹³⁴ Cs	2,06	NR	gamma spectrometry				
¹³⁷ Cs	30,07	10	gamma spectrometry	KN			
¹⁴⁴ Ce	0,78	NR	gamma spectrometry				
¹⁵⁴ Eu	8,8	NR	gamma spectrometry				
Activated corrosion products							
⁵⁴ Mn	0,85	NR	gamma spectrometry				
⁶⁰ Co	5,27	10	gamma spectrometry	KN			
^{108m} Ag	418	1	gamma spectrometry	DTM			
^{110m} Ag	0,68	NR	gamma spectrometry				

KN	Key Nuclide
DTM	Difficult-to-Measure Nuclide

		RADANAL L		
Nuclide	Nuclide T _{1/2} (year		Type of measurement	Remark
Fission products				
⁹⁰ Sr	29,1	1	beta spectrometry	DTM
¹³⁵ Cs	2300000	1	NAA	DTM
			ICP-MS	
¹²⁵ Sb	2,76	NR	gamma spectrometry	DTM
Activated	d corrosion products			
⁵⁵ Fe	2,73	1	X-ray spectrometry	DTM
⁵⁹ Ni	75000	1	X-ray spectrometry	DTM
⁶³ Ni	100	10	beta spectrometry	DTM
⁹³ Zr	1500000	1	ICP-MS	DTM
^{93m} Nb	16,1	10	X-ray spectrometry	DTM
⁹⁴ Nb	20300	1	gamma spectrometry	DTM
Actinides				
²³⁴ U	244000	0,05	alpha spectrometry	DTM
²³⁵ U	70400000	0,05	alpha spectrometry	DTM
²³⁷ Np	2100000	0,05	ICP-MS	DTM
²³⁸ U	447000000	0,05	alpha spectrometry	DTM
²³⁸ Pu	86,4	0,05	alpha spectrometry	DTM
²³⁹ Pu	24400	0,05	alpha spectrometry	DTM
²⁴⁰ Pu	6540	0,05	alpha spectrometry	DTM
²⁴¹ Am	432	0,05	alpha spectrometry	DTM
²⁴³ Am	7380	0,05	alpha spectrometry	DTM
²⁴² Cm	0,45	0,05	alpha spectrometry	DTM
²⁴⁴ Cm	17,9	0,05	alpha spectrometry	DTM

Determination of DTM nuclides at RADANAL Ltd.

Goal was to develop a combined procedure for the selective separation of Pu, Am-Cm, Np, U, Th (Zr) using a **single chromatographic column.**

The procedure should be

- adequate for analysis of liquid NPP waste (accurate, sensitive for LLW)
- adequate for measurement by α spectrometry and/or ICP-MS
- simple, cheap, fast for use in emergency situation.

Resin of high selectivity for actinides is needed.

3 methods have been developed:

UTEVA procedure TRU procedure DGA procedure

UTEVA® procedure **Chromatographic procedure for actinides (U, Th, Pu, Np)**

[HNO₃] M

UTEVA procedure: Basic concept of separation

• Load:

U(VI), Th(IV), Np(VI), Pu(VI) – $K_2S_2O_8$ or U(VI), Th(IV), Pu(IV) – NaNO₂ retention of actinides from 8M HNO₃/0.5M Fe(NO₃)₃:

- Elution of Pu(III) with 9M HCl/NH₄I Reduction of Pu to Pu(III)
- Elution of Th, Np with 4M HCl
- Elution of U with 0.1M HCl.

Ac(VI) and Ac(IV) after oxidation state adjustment

Fe(III) nitrate is used as salting-out agent

On-column reduction to Pu(III), Np(IV)

Ac(III) are not retained!

Determination of U, Pu (Np, Zr) in NPP wastes Flowchart of the UTEVA procedure

Acid destruction

Preconcentration is necessary

Oxidation state adjustment is recommended: $K_2S_2O_7$ with Ag+ catalyst to form Np(VI), Pu(VI)

Load from 8M HNO₃ with $Fe(NO_3)_3$ as salting-out agent

Optional: Np, Zr determination Np-Zr purification with UTEVA from 9M HCl load

Optional: Am determination from the 1st UTEVA effluent: Preconcentration with Ca oxalate Am separation with TRU resin

TRU® procedure Chromatographic procedure for all actinides (Ac) in small samples

TRU procedure: Basic concept of the separation

- Load: retention of all actinides from 2M HNO₃ Pu(IV), Am(III), U(VI), Th(IV), Np(IV),
- Elution of Am with 4M HCl.
- Elution of Pu(III) with 4M HCl /Ti³⁺ while Np is reduced to Np(IV) - retained,
 - Th and U(IV) are retained
- Elution of Th with 2M HCl/Ti⁴⁺
- Elution of Np with 2M HCl/Ti³⁺ while U is retained,
- Elution of U with 0.1M HCl.

Ac(III), Ac(IV),

Ac(VI) are retained

On-column redox

reactions are

feasible!

Determination of Pu, Am, Cm, U (Np) isotopes in NPP wastes – flowchart of TRU procedure

Rapid method for Am and Pu due to fusion Optional: destruction with mineral acids

Coprecipitation is necessary Removal of matrix

Optional analysis of **Pu, Th, Np, U isotopes** after purification with DGA resin columns to remove Ti species using other tracers **by ICP-MS**

DGA® procedure Chromatographic procedure for all actinides (Ac)

DGA procedure: Basic concept of the separation

- Load: retention of all actinides in reduced forms from 4M HCl/ Na₂SO₃ U(IV), Th(IV), Np(IV), Pu(III), Am(III)
- Elution of U with dilute HNO_3 after oxidation to U(VI), while Pu and Np are oxidized to Pu(IV), Np(IV)/Np(VI) - retained,
- Reduction of Pu and Np to Pu(III) and Np(IV),
- Elution of Th, Np with complexing agent oxalic acid, while trivalent actinides (Pu(III), Am) are retained,
- Elution of Pu with oxalic acid after oxidation to Pu(IV)
- Elution of Am with dilute HCl.

Ac(III) and Ac(IV) are completely retained!

On-column redox reactions are feasible!

Only Ac(IV) form oxalate complexes !

Optimization of the DGA procedure

Studied by model experiments

with single tracers

²³³U, ²³⁰Th, ²³⁹Pu, ²⁴¹Am ²³⁹Np produced from ²³⁸U(n,γ) measured by LSC or γ spectrometry

- U, Pu, Am fractions are well separated
- Np and Th are collected together
- Between the strip solutions wash solutions
- Recoveries are high (> 86%)
- Contamination by other actinides is $\leq 1-2\%$

Major advantage: Use of a single small resin column for all Ac in big samples!

Determination of ²³⁷Np and ⁹³Zr in NPP wastes

Determination of ⁹⁰Sr in NPP wastes

Sr yield is determined from gravimetry/AAS.

High selectivity for Sr is assured by the use of Sr selective crown ether: Sr Resin

By repeated measurement both ⁹⁰Sr and ⁸⁹Sr are determined.

The method is combined with the determination of actinides.

VAJDA N, GHODSESPHAHANI A, COOPER E, DANESI PR: DETERMINATION OF RADIOSTRONTIUM IN SOIL SAMPLES USING A CROWN-ETHER. JRNC 162:(2) pp. 307-323. p. 17 (1992)

Bq/dm³	Sam (normal evapora <mark>a</mark>	ple1 tor concentrate) UNC(a)	Sam (alpha-cont./eme concer	ple2 rgency evaporator ntrate)	Samp (decontaminati	le3 on solution)
³ Н	4,00E+05	2,0E+04	2,12E+05	1,1E+04	7,68E+04	3,8E+03
¹⁴ C	1,01E+04	1,01E+03	2,96E+03	2,96E+02	3,48E+02	3,48E+01
³⁶ Cl	3,65E+01	1,26E+01	9,03E+01	3,46E+01	< 1,1E+01	
⁵⁵ Fe	2,44E+05	2,44E+04	9,37E+06	9,36E+05	1,39E+05	2,08E+04
⁶³ Ni	4,41E+04	2,21E+03	1,75E+06	3,49E+05	2,78E+05	5,56E+04
⁹⁰ Sr	4,92E+02	3,32E+01	1,68E+06	2,35E+05	3,04E+05	2,33E+04
⁹³ Zr	3,52E+02	8,89E+00	8,03E-01	2,43E-02	5,06E-02	1,39E-03
⁹⁴ Nb	7,00E+02 1,40E+02		N/A		8,50E+02	1,00E+02
⁹⁹ Tc	< 1,7E-01		1,77E+01	5,35E+00	1,06E+01	2,07E+00
^{108m} Ag	1,38E+02	8,81E+00	1,34E+04	7,98E+02	1,32E+02	4,71E+00
¹²⁵ Sb	≤ 5,0	E+02	N/A		9,00E+03	8,00E+02
¹²⁹	1.94F-01	1.75E-02	7.32F-01	8.04F-02	< 2.7F-01	
²³⁴ U	2,20E-01	2,05E-02	≤ 1,67	7E+03	3,39E+01	6,88E+00
²³⁵ U	≤ 1,13	3E-02	≤ 1,66E+03		≤ 7,73E+00	
²³⁷ Np	4,55E-03	5,27E-04	1,38E-02	7,95E-04	3,36E-03	1,94E-04
²³⁸ Pu	1,29E+01	4,65E-01	9,37E+04	3,38E+03	1,38E+04	4,48E+02
²³⁸ U	1,49E-01	1,64E-02	≤ 1,14E+03		8,79E+00	3,60E+00
^{239,240} Pu	9,39E+00	3,53E-01	9,84E+04	3,53E+03	1,25E+04	4,08E+02
²⁴¹ Am	7,47E+00	2,60E-01	8,73E+04	3,23E+03	1,33E+04	4,55E+02
²⁴⁴ Cm	3 24F+00	1 24F-01	1 22F+04	7 27F+02	2 77F+03	1 18F+02

Determination of ¹³⁵Cs in NPP wastes

AMP is a selective ion exchanger for Cs.

Small cation column is used to separate Ba, the isobar interference for ¹³⁵Cs in ICP-MS.

NAA and ICP-MS results correlated well:

Measured concentrations in wastes: 20-100 ng/L ~ 1-5 Bq/L

Nagy P, Vajda N, Sziklai-László I, Kovács-Széles É, Simonits A: Determination of 135Cs in nuclear power plant wastes by ICP-MS and k 0-NAA. JRNC 299:(2) pp. 615-627. (2014)

Determination of ⁵⁵Fe, ⁵⁹Ni, ⁶³Ni in NPP wastes

Home made EC resins are used:		$CH_3 C = O$	H₃C—C=NO H₃C—C=NO	$\begin{array}{c} H \\ H \\ H \\ H \\ H \\ H_{3}C \\ H_{$	0 ^{−H-} 0 ^N N ^N ≈C [−] CH ₃ ^N N ^N [−] CH ₃ ^N N [−] CH ₃	
Bq/dm³	Sample1 (normal evaporator concentrate)		Sample2 (alpha-cont./emergency evaporator concentrate)		Sample3 (decontamination solution)	
³ H	4,00E+05	2,0E+04	2,12E+05	1,1E+04	7,68E+04	3,8E+03
¹⁴ C	1,01E+04	1,01E+03	2,96E+03	2,96E+02	3,48E+02	3,48E+01
³⁶ Cl	3,65E+01	1,26E+01	9,03E+01	3,46E+01	< 1,07E	-+01
⁵⁵ Fe	2,44E+05	2,44E+04	9,37E+06	9,36E+05	1,39E+05	2,08E+04
⁵³ Ni	4,41E+04	2,21E+03	1,75E+06	3,49E+05	2,78E+05	5,56E+04
^{∋0} Sr	4,92E+02	3,32E+01	1,68E+06	2,35E+05	3,04E+05	2,33E+04
⁹³ Zr	3,52E+02	8,89E+00	8,03E-01	2,43E-02	5,06E-02	1,39E-03
⁹⁹ Tc	< 1,67E	-01	1,77E+01	5,35E+00	1,06E+01	2,07E+00
^{108m} Ag	1,38E+02	8,81E+00	1,34E+04	7,98E+02	1,32E+02	4,71E+00
¹²⁹	1,94E-01	1,75E-02	7,32E-01	8,04E-02	< 2,678	-01
²³⁸ Pu	1,29E+01	4,65E-01	9,37E+04	3,38E+03	1,38E+04	4,48E+02
^{239,240} Pu	9,39E+00	3,53E-01	9,84E+04	3,53E+03	1,25E+04	4,08E+02
²⁴¹ Am	7,47E+00	2,60E-01	8,73E+04	3,23E+03	1,33E+04	4,55E+02
²⁴⁴ Cm	3,24E+00	1,24E-01	1,22E+04	7,27E+02	2,77E+03	1,18E+02

Determination of ^{93m}Nb, ⁹⁴Nb, ¹²⁵Sb in NPP wastes

Sample: 100 mL waste Tracers: ⁹⁵Zr-⁹⁵Nb, ¹²⁴Sb Carriers: 10 mg Nb, 10 mg Sb

Results of analysis Activity concentration of ^{93m}Nb is usually close to LD.

	Sample1		Sample2		Sample3	
Bq/dm ³	(normal evaporator concentrate)		(alpha-cont./emergency evaporator		(decontamination solution)	
	а	unc(a)	concei	ntrate)		
³ Н	4,00E+05	2,0E+04	2,12E+05	1,1E+04	7,68E+04	3,8E+03
¹⁴ C	1,01E+04	1,01E+03	2,96E+03	2,96E+02	3,48E+02	3,48E+01
³⁶ Cl	3,65E+01	1,26E+01	9,03E+01	3,46E+01	< 1,1E-	+01
⁵⁵ Fe	2,44E+05	2,44E+04	9,37E+06	9,36E+05	1,39E+05	2,08E+04
⁶³ Ni	4,41E+04	2,21E+03	1,75E+06	3,49E+05	2,78E+05	5,56E+04
⁹⁰ Sr	4,92E+02	3,32E+01	1,68E+06	2,35E+05	3,04E+05	2,33E+04
⁹³ Zr	3,52E+02	8,89E+00	8,03E-01	2,43E-02	5,06E-02	1,39E-03
⁹⁴ Nb	7,00E+02 1,40E+02		N/A		8,50E+02	1,00E+02
⁹⁹ Tc	< 1,7E-01		1,77E+01	5,35E+00	1,06E+01	2,07E+00
^{108m} Ag	1.38E+02	8.81E+00	1.34E+04	7.98E+02	1.32E+02	4.71E+00
¹²⁵ Sb	≤ 5.0	E+02	N/A		9.00E+03	8.00E+02
¹²⁹	1,94E-01	1,75E-02	7,32E-01	8,04E-02	< 2,7E	-01
²³⁴ U	2,20E-01	2,05E-02	≤ 1,67	7E+03	3,39E+01	6,88E+00
²³⁵ U	≤ 1,13	3E-02	≤ 1,66E+03		≤ 7,73E+00	
²³⁷ Np	4,55E-03	5,27E-04	1,38E-02	7,95E-04	3,36E-03	1,94E-04
²³⁸ Pu	1,29E+01	4,65E-01	9,37E+04	3,38E+03	1,38E+04	4,48E+02
²³⁸ U	1,49E-01	1,64E-02	≤ 1,14	4E+03	8,79E+00	3,60E+00
^{239,240} Pu	9,39E+00	3,53E-01	9,84E+04	3,53E+03	1,25E+04	4,08E+02
²⁴¹ Am	7,47E+00	2,60E-01	8,73E+04	3,23E+03	1,33E+04	4,55E+02
²⁴⁴ Cm	3,24E+00	1,24E-01	1,22E+04	7,27E+02	2,77E+03	1,18E+02

Determination of DTM nuclides at INSTITUTE FOR NUCLEAR RESEARCH OF HUNGARIAN ACADEMY OF SCIENCES (INR HAS) -ISOTOPTECH Co.

Determination of ³H in NPP wastes

Low-pressure cold-distillation

LSC counting

Determination of ¹⁴C in NPP wastes

Acidic destruction and 2-step trapping of CO₂
1. step: total oxidisation of the sample, CO₂ is trapped in Ba(OH)₂ as BaCO₃
2. step: CO₂ is released from BaCO₃ and trapped in NaOH as NaHCO₃

A set of results for 3 sample types

a unc(a)							
Bq/dm ³	Sample1 (normal evaporator		Sampl (alpha-cont./emerge	Sample2 (alpha-cont./emergency evaporator		Sample3 (decontamination solution)	
	concenti	rate)	concentr	ate)			
³ Н	4,00E+05	2,0E+04	2,12E+05	1,1E+04	7,68E+04	3,8E+03	
¹⁴ C	1,01E+04	1,01E+03	2,96E+03	2,96E+02	3,48E+02	3,48E+01	
³⁶ Cl	3,65E+01	1,26E+01	9,03E+01	3,46E+01	< 1,07E	E+01	
⁵⁵ Fe	2,44E+05	2,44E+04	9,37E+06	9,36E+05	1,39E+05	2,08E+04	
⁶³ Ni	4,41E+04	2,21E+03	1,75E+06	3,49E+05	2,78E+05	5,56E+04	
⁹⁰ Sr	4,92E+02	3,32E+01	1,68E+06	2,35E+05	3,04E+05	2,33E+04	
⁹³ Zr	3,52E+02	8,89E+00	8,03E-01	2,43E-02	5,06E-02	1,39E-03	
⁹⁹ Tc	< 1,67E	-01	1,77E+01	5,35E+00	1,06E+01	2,07E+00	
^{108m} Ag	1,38E+02	8,81E+00	1,34E+04	7,98E+02	1,32E+02	4,71E+00	
129	1,94E-01	1,75E-02	7,32E-01	8,04E-02	< 2,678	E-01	
²³⁸ Pu	1,29E+01	4,65E-01	9,37E+04	3,38E+03	1,38E+04	4,48E+02	
^{239,240} Pu	9,39E+00	3,53E-01	9,84E+04	3,53E+03	1,25E+04	4,08E+02	
²⁴¹ Am	7,47E+00	2,60E-01	8,73E+04	3,23E+03	1,33E+04	4,55E+02	
²⁴⁴ Cm	3,24E+00	1,24E-01	1,22E+04	7,27E+02	2,77E+03	1,18E+02	

Determination of ³⁶Cl and ¹²⁹I in NPP wastes

Destruction with ccH₂SO₄, I₂ formed is trapped by CCl₄, backextracted as I⁻, precipitated as AgI, yield by gravimetry, HCl is trapped in H₂O, yield by ion chromatography

A set of results for 3 sample types a unc(a)

Sample2 Sample3 Sample1 Bq/dm³ (normal evaporator (alpha-cont./emergency evaporator (decontamination solution) concentrate) concentrate) ЗH 4,00E+05 2,0E+04 3,8E+03 2,12E+05 1,1E+04 7,68E+04 ¹⁴C 1,01E+041,01E+03 2,96E+03 2,96E+02 3,48E+02 3,48E+01 ³⁶Cl 3,65E+01 1,26E+01 9,03E+01 3,46E+01 < 1,07E+01 ⁵⁵Fe 2,44E+05 2,44E+04 9,37E+06 9,36E+05 1,39E+05 2,08E+04 ⁶³Ni 4,41E+04 2,21E+03 1,75E+06 3,49E+05 2,78E+05 5,56E+04 ⁹⁰Sr 4,92E+02 3,32E+01 1,68E+06 2,35E+05 3,04E+05 2,33E+04 ⁹³Zr 8.89E+00 5,06E-02 3,52E+02 8,03E-01 2,43E-02 1,39E-03 ⁹⁹Tc < 1,67E-01 1,77E+01 5,35E+00 1,06E+01 2,07E+00 108mAg 1,38E+02 8,81E+00 1,34E+04 7,98E+02 1,32E+02 4,71E+00 129 1,94E-01 1,75E-02 7,32E-01 8,04E-02 < 2,67E-01 ²³⁸Pu 1,29E+01 4,65E-01 9,37E+04 4,48E+02 3,38E+03 1,38E+04 239,240 Pu 9,39E+00 3,53E-01 9,84E+04 3,53E+03 1,25E+04 4,08E+02 ²⁴¹Am 7,47E+00 2,60E-01 8,73E+04 3,23E+03 1,33E+04 4,55E+02 ²⁴⁴Cm 1,22E+04 1,18E+02 3,24E+00 1,24E-01 7,27E+02 2,77E+03

Determination of ^{108m}**Ag and** ⁹⁹**Tc in NPP wastes**

Concentration of Ag using ultrafiltration

Measurement by gamma spectrometry, e.g.

Isotope	Activity concentration (Bq/dm ³)		
^{108m} Ag	(7,98±0.21) E+02		
^{110m} Ag	(7,29±0.06) E+03		

Separation of Tc from the Ag permeate: removal of water content, acidic destruction, precipitation with H_2S , purification with cation exchange and extraction chromatography using TEVA resin

Measurement of ⁹⁹Tc-TEVA using Insta Gel by LSC

A set of results for 3 sample types upc(a)

a unc(a)							
Bq/dm³	Sampl normal eva) concenti	le1 porator rate)	Sample2 (alpha-cont./emergency evaporator concentrate)		Sample3 (decontamination solution)		
³ Н	4,00E+05	2,0E+04	2,12E+05	1,1E+04	7,68E+04	3,8E+03	
¹⁴ C	1,01E+04	1,01E+03	2,96E+03	2,96E+02	3,48E+02	3,48E+01	
³⁶ Cl	3,65E+01	1,26E+01	9,03E+01	3,46E+01	< 1,07E	-+01	
⁵⁵ Fe	2,44E+05	2,44E+04	9,37E+06	9,36E+05	1,39E+05	2,08E+04	
⁶³ Ni	4,41E+04	2,21E+03	1,75E+06	3,49E+05	2,78E+05	5,56E+04	
⁹⁰ Sr	4,92E+02	3,32E+01	1,68E+06	2,35E+05	3,04E+05	2,33E+04	
⁹³ Zr	3,52E+02	8,89E+00	8,03E-01	2,43E-02	5,06E-02	1,39E-03	
⁹⁹ Tc	< 1,67E	-01	1,77E+01	5,35E+00	1,06E+01	2,07E+00	
^{108m} Ag	1,38E+02	8,81E+00	1,34E+04	7,98E+02	1,32E+02	4,71E+00	
¹²⁹	1,94E-01	1,75E-02	7,32E-01	8,04E-02	< 2,671	E-01	
²³⁸ Pu	1,29E+01	4,65E-01	9,37E+04	3,38E+03	1,38E+04	4,48E+02	
^{239,240} Pu	9,39E+00	3,53E-01	9,84E+04	3,53E+03	1,25E+04	4,08E+02	
²⁴¹ Am	7,47E+00	2,60E-01	8,73E+04	3,23E+03	1,33E+04	4,55E+02	
²⁴⁴ Cm	3,24E+00	1,24E-01	1,22E+04	7,27E+02	2,77E+03	1,18E+02	

Methods under development based on ICP-MS/MS measurement

for the sensitive determination of ⁷⁹Se, ¹⁰⁷Pd, ¹²⁹I, ¹⁵¹Sm, ¹⁴⁷Pm

Scaling factors for NPP waste characterization

Determination of SF for liquid wastes at NPP Paks

Scaling factors are determined from the analysis of liquid wastes: $C_{DTM}=b^*(C_{KN})^m$

- C_{DTM} acivity concentration of DTM nuclide
- C_{KN} acivity concentration of key nuclide
- m, b parameters

Instead of a summary...

Thank you for your attention!